On subdirect products of free pro-p groups and Demushkin groups of infinite depth
نویسندگان
چکیده
منابع مشابه
On subdirect products of free pro-p groups and Demushkin groups of infinite depth
We study subdirect products of free and Demushkin pro-p groups of depth ∞ developing theory similar to the abstract case, see [4]. Furthermore we classify when a subdirect product has homological type FPm for some m ≥ 2, a problem still open for abstract groups for m ≥ 3.
متن کاملFree-by-Demushkin pro-p groups
We give an example of a short exact sequence 1 → N → G → D → 1 of pro-p groups such that the cohomological dimension cd(G) = 2, G is (topologically) finitely generated, N is a free pro-p group of infinite rank, D is a Demushkin group, for every closed subgroup S of G containing N and any natural number n the inflation map H2(S/N,Z/(pn)) → H2(S,Z/(pn)) is an isomorphism but G is not a free pro-p...
متن کاملcommuting and non -commuting graphs of finit groups
فرض کنیمg یک گروه غیر آبلی متناهی باشد . گراف جابجایی g که با نماد نمایش داده می شود ،گرافی است ساده با مجموعه رئوس که در آن دو راس با یک یال به هم وصل می شوند اگر و تنها اگر . مکمل گراف جابجایی g راگراف نا جابجایی g می نامیم.و با نماد نشان می دهیم. گرافهای جابجایی و ناجابجایی یک گروه متناهی ،اولین بار توسطاردوش1 مطرح گردید ،ولی در سالهای اخیر به طور مفصل در مورد بحث و بررسی قرار گرفتند . در ،م...
15 صفحه اولOn the Finite Presentation of Subdirect Products and the Nature of Residually Free Groups
We establish virtual surjection to pairs (VSP) as a general criterion for the finite presentability of subdirect products of groups: if Γ1, . . . ,Γn are finitely presented and S < Γ1×· · ·×Γn projects to a subgroup of finite index in each Γi × Γj , then S is finitely presentable, indeed there is an algorithm that will construct a finite presentation for S. We use the VSP criterion to character...
متن کاملON AUTOMORPHISMS OF FREE PRO-p-GROUPS I
Let F be a (topologically) finitely generated free pro-p-group, and ß an automorphism of F . If p ^ 2 and the order of ß is 2 , then there is some basis of F such that ß either fixes or inverts its elements. If p does not divide the order of ß , then the subgroup of F of all elements fixed by ß is (topologically) infinitely generated; however this is not always the case if p divides the order o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2011
ISSN: 0021-8693
DOI: 10.1016/j.jalgebra.2011.06.012